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AGEMOD SAMPLE INPUT FILE (comments on right)

23 0.00 1.0 1.0 ! (num of pts, initial age, relax time, var frq)
7.00 24.0 0.1 0.0
60.00 18.0 4.0 0.0
4.00 13.0 8.0 0.0
730.00 18.0 4.0 0.0
7.00 24.0 0.1 0.0 ! Time Interval-Temperature Profile
2.00 13.0 10.0 ¢.0 ! (interval, temp, temp std dev, var amp)
1460.00 23.0 0.1 0.0
2.00 13.0 10.0 0.0
180.00 18.0 4.0 0.0
4.00 13.0 8.0 0.0
730.00 18.0 4.0 0.0
(a) 7.00 24.0 0.1 0.0
2.00 13.0 10.0 0.0
1460.00 23.0 0.1 0.0
2.00 13.0 10.0 0.0
180.00 18.0 4.0 0.0
4.00 13.0 4.0 0.0
730.00 18.0 4.0 0.0
7.00 24.0 0.1 0.0
2.00 13.0 10.0 0.0
1460.00 23.0 0.1 0.0
2.00 13.0 10.0 0.0
180.00 18.0 4.0 0.0
9 ! (num of pts in following profile)
0.00 66.0
36.52 63.0
146.10 62.0 ! Age-Stress Free Temperature Prof.
292.20 61.0 {age, stress free temperature)
(b) 438.37 60.0
657.20 59.0
1826.25 58.0
3652.50 57.0
7305.00 56.0
66.0 25.0 0.080 ! (init TSF, amb. temp, std dev frac)
8 I (num of pts in following profile)
-40.0 2.76
-29.0 2.12
~18.0 1.57
(c) -7.0 1.07 ! Temp-LoglQ Bulk Temp. Shift Profile
7.0 0.52 (temp, logl0 Bulk Temp. Shift)
25.0 0.03
43.0 -0.57
63.0 -1.06
8 ! (num of pts in following profile)
-40.0 4.27
-29.0 3.66
-18.0 2.50
(d) -7.0 1.58 ! Temp-LoglQ Int. Temp. Shift Profile
4.0 0.60 (temp, loglO Int. Temp. Shift)
24.0 0.00
43.0 -0.38
65.0 -1.45
8 ! (num of pts in following profile)
-2.0 3.05
-1.0 2.85
0.0 2.70 ! LoglO(t/aT)-LoglO(Bulk Modulus)
(e) 1.0 2.55 ! Profile
2.0 2.50 I (LoglO(t/aT), loglO(bulk modulus))
3.0 2.40
4.0 2.35
5.0 2.30
8 ! (num of pts in following profile)

|
N
[=)
w
o
o

Fig. 2A
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-1.0 3.45
0.0 3.30
1.0 3.20 ! LoglO(t/aT)-LoglO{Intf. Modulus)
(f) 2.0 3.10 ! Profile
3.0 3.00 ! (loglO(t/aT), loglO(intf. modulus))
4.0 2.90
5.0 2.80

6 ! (num of pts in following profile)
1278.375 3.84 1.00 !  Age-Kt Profile
2118.450 3.31 10.00 ! (age, Kt, stat wgt of data pt)
2337.600 1.82 5.00

(g) 2483.700 2.79 4.00
2739.375 2.23 12.00
2848.950 1.64 3.00
0.15 ! (std dev of loglO (Kt) )
11 ! (num of pts in following profile)
800.0 520.0 146.0 ! Interface Modulus-Bulk Modulus
1450.0 320.0 163.0 ! Stress Profile
1150.0 560.0 225.0 ! (intf. modulus,bulk modulus, stress)
1100.0 480.0 202.0
(h) 850.0 500.0 110.0
618.0 152.0 50.0
663.0 180.0 83.0
785.0 226.0 116.0
895.0 261.0 130.0
1102.0 298.0 167.0
2178.0 428.0 250.0
-29.0 25.0 25.0 ! (tempfe,bulk WLF Tref,intf. WLF Tref)

6 ! (num of pts in following profile)
1278.375 3.22 ! Age-logl0 (Intf. Modulus) Profile
2118.450 3.26 ! (age, loglO(intf. modulus))

(i) 2337.600  3.09
2483.700 3.23
2739.375 3.20
2848.950 3.03
0.98 0.130 ! (mean bulk mod. ratio,std dev bulk mod. ratio)
1.12 450.0 ! (maximum aging function,half-life of aging function)
0.260 0.910 ! (std dev logl0(bulk aT),std dev loglO(intf. aT))
(3) 0.031 0.077 ! (std dev logl0O(bulk mod.)},std dev loglO(intf. mod.))
1.20 ! (k3d)
20.0 ! (sigma infinity)
0.0006944 ! (tau0)

7 ! (num of pts in following profile)
1278.375 1.982 12.00 ! Age-logl0 (sigma0O) Profile
2337.600 2.078 20.00 ! (age, loglO(sigma0), data stat wgt)
2483.700 2.104 15.00

(k) 2739.375 2.180 6.00
2848.950 2.010 9.00
2848.950 2.093 23.00
3396.825 2.024 18.00

7 ! {num of pts in following profile)
1278.375 7.44 10.00 ! Age-B exponent Profile
2337.600 8.74 15.00 ! {age, B exponent, stat wgt of data)
2483.700 7.05 8.00

(1) 2739.375 9.88 4.00
2848.950 7.62 5.00
2848.950 9.60 2.00
3396.825 10.00 20.00

1.2 ! (std deviation of B exponent)
100000Q -991 ! (number of iterations, initial integer seed)

Fig. 2B
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CUMULATIVE DAMAGE MODEL FOR
STRUCTURAL ANALYSIS OF FILED
POLYMERIC MATERIALS

CLAIM OF PRIORITY

This application makes reference to, incorporates the
same herein, and claims all benefits accruing under 35
US.C. §119 from our provisional application entitled
CUMULATIVE DAMAGE MODEL FOR STRUCTURAL
ANALYSIS OF FILLED POLYMERIC MATERIALS filed
with the United States Patent and Trademark Office on Aug.
6, 1998 and there duly assigned Ser. No. 60/095,452.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a method of
predicting the service life of filled polymeric materials.

2. Description of the Related Art

There are numerous situations in which it is important to
be able to predict the fatigue failure of a filled polymeric
material. Examples of filled polymeric materials in which
fatigue failure is critical include airplane parts, rubber tires
and solid propellant rocket motors. Since in many cases the
polymer will have a long service life, perhaps on the order
of years, it is desirable and often critical to be able to
estimate the service life using mathematical models.

For example, in the case of solid propellant rocket motors,
grain structural integrity can be the factor limiting the usable
service life. If structural failure occurs, it is almost certain
that ballistic performance will be substantially altered, pos-
sibly to the point of catastrophic motor failure. It is therefore
desirable to be able to estimate what the chances of grain
failure are as the motor is handled and stored prior to use.

In the case of solid propellant rocket motors, there are
many modes by which the solid propellant within the rocket
motor can receive a mechanical stress load. One of the most
common is stress arising from thermal contraction. This
particularly significant where the propellant is bonded to a
steel pressure vessel. The propellant is typically cured at
elevated temperatures to chemically accelerate the curing
process. Since the coefficient of thermal expansion of the
propellant is typically an order of magnitude greater than
that of the steel vessel, and the Young’s modulus of steel is
roughly five orders of magnitude higher than that of the
propellant, the propellant cannot contract fully upon cooling.
This yields a rocket motor which is stress-free at the elevated
temperature, but under continual stress once the rocket
motor cools.

The modeling of stress in this situation is complicated as
the propellant, in time, responds to this environment by
undergoing changes at the molecular level that tend to
relieve some of this stress. These changes generally consist
of viscous flow of the polymeric binder and changes in
crosslinking. These changes cause the propellant to take a
permanent set, much as a garden hose which has been coiled
in storage. This process is commonly referred to as a shift in
the stress-free temperature.

While stressed, the binder microstructure also begins to
tear. This process has been observed to increase linearly with
time up to the point of macroscopic fracture when the
applied stress is constant. The degree of damage, or damage
fraction, done to the binder is therefore directly related to the
total time the stress was applied and the time required to
produce macroscopic failure at that same stress, specifically
to the ratio of the former to the latter. At different levels of

10

15

20

35

40

45

50

55

60

65

2

stress the amount of damage produced in a given amount of
time varies considerably, being proportional to the stress
raised to a large power, usually in the range of 6 to 12. If the
propellant has been loaded to a number of different stresses,
that is, has a complex service life history, the cumulative
damage is simply the sum of each of the individual constant
stress components. When they sum to unity, macroscopic
failure is imminent.

The binder may also continue to undergo chemical
changes long after the motor has been removed from its
curing oven. These may include continued crosslinking
chemical reactions with trace amounts of curative or reac-
tions induced by exposure to the ambient environment, for
example binder oxidation. Migration of mobile chemical
species may produce non-homogeneous areas with the grain.
These will frequently manifest themselves as changes in the
propellant’s mechanical properties which will in turn modify
the level of stress, by changes in Young’s modulus, or the
strength, by changes in the maximum stress that can be
attained.

To account for the inevitable cyclic nature of the loading
in a complex sequence the linear cumulative damage model
is often employed. As the name implies, there is a finite
amount of damage sustained by the material during each
segment of its load history. The damage contributions are
numerically added, using a running total. Damage is con-
veniently expressed as a ratio, defined as the time dwelt
under a constant load divided by the time required to
produce failure at the same load level. When the sum of
damage for a many-load sequence approaches unity, failure
is imminent.

The level of stress within the structure must be known in
order to estimate damage. This is usually determined by
performing a finite element analysis. For complicated struc-
tures the corresponding finite element model may be quite
large, requiring a significant amount of computation to
exercise. If the load sequence is long and varied it may be
necessary to make many runs of the finite element model to
compute the corresponding stress sequence. For moderate to
large finite element models, the time needed is often so large
that it is not practical to perform the calculation. Rather,
engineering judgments and approximations are sometimes
made, so that many of the loads suspected of causing little
or no damage are ignored. This is at best an imprecise
process.

There is another complicating factor that is specifically
associated with polymeric materials: the large statistical
variability of the mechanical properties. Furthermore, when
estimating the performance of a large population of struc-
tural members, the specific environment for each one may
not be the same, but rather lies within some statistical
distribution. These factors place a large uncertainty in the
level stress applied within the structure throughout its ser-
vice life. Because the amount of damage changes exponen-
tially as the stress changes, this uncertainty in the stress
magnitude is magnified in the results.

While the older models can accurately evaluate the
amount of damage that occurs over a specific set of material
properties and environmental conditions there has not been
any provision to gauge the impact of their statistical vari-
ability. Although this could be done by simply repeating the
analysis a number of times, using a statistical sample input
for each and noting the incidence of failure and success, this
has been not practical owing to the large amount of com-
putational effort required. For structures with a relatively
low failure rate, which is the usual case, the finite element



US 6,301,970 B1

3

model would need to be exercised thousands or even tens of
thousands of times, that is, once for each load level within
each load history, to estimate reliability. For a finite element
model of any appreciable size this is not practical and
practice is not done. Rapid and easy calculation of the
fatigue life would be generally desirable, and would be
particularly useful in a design process where the designer
may have to produce numerous design iterations.

Methods to predict fatigue failure are seen in the follow-
ing examples of the contemporary art. U.S. Pat. No. 5,531,
123, to Henkel, entitled Remote and Powerless Miniature
Fatigue Monitor and Method, describes a passive monitor
for measurement of fatigue and a method for fatigue testing.
The method includes locating a region of high stress, moni-
toring the fatigue in the direction of principal stress using a
passive fatigue monitor during cycle loads, and using Min-
er’s rule for cumulative damage to estimate fatigue life. This
method, however, requires the identification of a high stress
region and the experimental cycling of the material under
loads to obtain fatigue data. This is an involved process
which requires assumptions about the regions of high stress,
and is in particular not practical for rapid estimation of
fatigue life in a design process.

U.S. Pat. No. 5,736,645, to Chin-Chan et al., entitled
Method of Predicting Crack Initiation Based Fatigue Life,
describes a method involving plotting the finite element
stress states of a stress history for a given component at a
predetermined critical location in the stress space and deter-
mining the least square fit ellipsoid of the stress states. This
method attempts to overcome the problems of uniaxial
fatigue analysis by performing a multiaxial fatigue analysis.
We have found that this method does not address many of
the problems associated with filled polymeric materials,
however.

“Problem of the Month, July 1997—Monte Carlo Reli-
ability Model Starting With WinSMITH Weibull Data”,
originating with Barringer and Associates, Inc., describes a
method for estimating the fatigue life of a pressure vessel
(coke drum). The method involves obtaining stress data,
building (modeling) the stress distribution, simulating stress
using a Monte Carlo approach and the use of Miner’s rule
for fatigue. This example illustrates the use of the Miner’s
rule assumption that when the sum of damage for a many-
load sequence approaches unity, failure is imminent. In this
example, though, a model having actual experimental
stresses and the S-N curve was available, and a complete
finite element analysis was not necessary for each cycle. We
have noticed this example therefore does not address the
problems encountered in using a Monte Carlo approach with
filled polymeric materials.

We have discovered, then, that what is needed is an
improved, more rapid method of estimating the probability
of fatigue failure in filled polymeric materials.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
an improved method of estimating fatigue life of polymeric
materials.

It is a further object of the invention to provide a more
rapid method of estimating fatigue life of polymeric mate-
rials.

It is yet further object of the invention to provide a more
accurate method of estimating fatigue life of polymeric
materials.

It is still further object of the present invention to provide
a method of estimating fatigue life of polymeric materials
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which does not rely on engineering judgments ignoring the
loads suspected of causing little or no damage.

It is still yet further object of the present invention to
provide a method of estimating fatigue life of polymeric
materials which can be performed on a personal computer or
workstation.

It is another object of the present invention to provide a
method of estimating fatigue life of polymeric materials
which allows rapid testing of design iterations.

It is yet another object of the present invention to provide
a method of estimating fatigue life of polymeric materials
which is less expensive.

It is still another object of the present invention to provide
an improved method of estimating the fatigue life of solid
propellant rocket motors.

The present invention provides a method for estimating
the fatigue damage to a filled polymeric material, including
the steps of obtaining mechanical data necessary for per-
forming a finite element analysis; exercising a finite element
model over the range of mechanical property values that will
be encountered in use; determining the area of highest stress
in the filled polymeric material; performing a regression
analysis versus the input modulus for the region of peak
stress; performing a numerical integration for a given load
history to which the structure of interest is exposed, with
stress being determined based on the results of the regres-
sion analysis; and performing a Monte Carlo simulation
involving load conditions and the values for parameters
describing the material and structure.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention, and many
of the attendant advantages, thereof, will be readily apparent
as the same becomes better understood by reference to the
following detailed description when considered in conjunc-
tion with the accompanying drawings in which like refer-
ence symbols indicate the same or similar components,
wherein:

FIG. 1 is a flow diagram illustrating the general method
suitable for the practice of the present invention;

FIGS. 2(a) and (b) are a sample input file for a computer
program performing the present invention;

FIG. 3 is a cross-sectional diagram of a rocket motor
whose failure may be modeled using the present invention;
and

FIGS. 4(a) and (b) are exemplary illustrations of load
history step functions.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The contents of our provisional application Ser. No.
60/095,452, entitted CUMULATIVE DAMAGE MODEL
FOR STRUCTURAL ANALYSIS OF FILLED POLY-
MERIC MATERIALS, filed with the United States Patent
and Trademark Office on Aug. 6, 1998 are herein incorpo-
rated by reference.

The present invention provides a method which is a
flexible engineering tool which may be used for many
different loading histories and material property sets.
Examples will be provided illustrating the use of the method
for estimating the probability of solid propellant structural
failure, to thereby predict the service life of the motor, but
the method may be applicable to estimating the service life
of other filled polymeric materials and devices.
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FIG. 1 is a flow diagram illustrating the general method
of the present invention for estimating fatigue damage. In
step 10, the mechanical properties data necessary for per-
forming a finite element analysis are obtained. If necessary,
these may be obtained experimentally from samples of the
materials used.

In step 20, a finite element model is exercised over the
range of mechanical property values that will be encoun-
tered in use. Specifically, the load history is examined to
determine the maximum and minimum values of relaxation
modulus that will be encountered. The relaxation modulus is
derived from the loading time and temperature.

In step 25, the area of highest stress is determined and
selected from the finite element model. The area of highest
stress may be determined from the finite element model, or
may be determined from full scale overload testing of the
structure. In step 30, a regression analysis is performed
versus the moduli input into the finite element model, to
determine regression coefficients as discussed below.

In step 40, numerical integration is performed for a given
load history profile to which the structure of interest is
exposed. For example, this profile could represent loads
experienced during times in storage, shipment and handling.
Commonly, the load history is a time-temperature profile.

In step 50, a Monte Carlo simulation is performed. The
Monte Carlo simulation involves a statistically random
selection of values for the load conditions and for the
parameters describing the material and structure, as
described below. These values are used in the numerical
integration of step 40, and numerous iterations of the
numerical integration are general performed.

In the present invention, the stress, o, at the area of
interest is determined using the following formula:

N (9]
o= KZ (@G EnE)(Tsr —T) [ (Tsro — To)
)

Here, E; are the relaxation moduli (for example Young’s
moduli) of the materials composing the structure (N=1 for a
single, isotropic material); E,; are aging functions for deter-
mining the effect of aging of the material on the relaxation
modulus; variables a, are regression coefficients for estimat-
ing the stress at a particular point in a specific structure; K
is a proportionality constant for approximating the three-
dimensional stress field; T is the stress-free temperature;
T r is the common stress-free temperature at which the a;
were derived, and may be equal to the initial stress-free
temperature, before permanent set has occurred; T, is the
common environmental temperature at which the a;, were
derived; and T is the temperature at which the stress o is
being estimated.

The relaxation moduli E; are experimentally determined
values from mechanical properties tests. They may be
determined, for example, from standard JANNAF-class
specimens.

The aging parameters E,; are determined by comparing
aged samples of the materials to unaged samples, and may
be derived from a regression analysis of the aged sample
data. The time-dependent aging function may include the
approximation that the aging function has a constant value
for ages older than the last measured datum. The approxi-
mation avoids errors which may arise from extrapolating the
aged sample data past the last datum. The aging parameters
are normalized to have a value of unity for unaged material.

The regression coefficients a; allow for the estimation of
the stress in a particular structure without performing a finite
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element analysis for every iteration. These coefficients are
determined by exercising a finite element model of the
structure over the range of mechanical property values that
will be encountered in use for the relevant load mechanism,
which may be thermal, shock, vibration, etc. A regression
analysis is then performed to find the values of a, which
force the equation to reproduce the finite element results at
the peak structural load location.

The proportionality constant, K, is a factor to adjust for
the three dimensional geometry of the structure. It is used to
compensate for the ratio of maximum structural stress to that
predicted when a two-dimensional finite element analysis is
used to determine the values of a,.

The value of K may be equal to unity if the working finite
element model is sufficient to fully model the structure of
interest. However, if, for example, the working model is
two-dimensional (2-D), but the physical situation demands
a three-dimensional (3-D) description, then a three-
dimensional model may be constructed and exercised to
determine the magnitude of the 3-D effect. This result is used
to modify the 2-D result by means of the factor K.

Polymeric materials may undergo an internal tearing
process when subjected to a sustained load. This damage
process continues until macroscopic failure occurs. The
stress calculated in equation 1 may be used to determined
fatigue damage to the structure. Once the parameters of
equation 1 have been determined, further use of the finite
element model for the structure is unnecessary. In the
present invention, damage, D, is calculated by performing a
numerical integration of the formula equation:

D= (oo — oo 1) f (o0 — o P far(e)d @

Here, the parameter oy is the stress that will cause failure t,.
o, is the threshold stress below which failure will not occur
irrespective of load time. agg (t) is the time-varying
(because, in general, temperature is changing with time)
propellant temperature shift factor. These parameters, along
with the exponent B, are measured by performing laboratory
tests on tensile coupon samples. Shift factors are derived
from relaxation modulus data. The remaining parameters are
derived from uniaxial constant rate tensile tests (performed
at a number of temperatures and strain rates) and creep
testing. o(t) is the input stress history of interest and may be
any complex sequences of stresses. The overall load
sequence used may be the outcome of the structure’s service
environment, rather than a specific sequence of stresses.
Note that, once the regression coefficients a; are calculated
for use in equation (1), there is no further need to perform
a finite element analysis, and no finite element analysis need
be performed in the numerical integration of equation (2).
Note that in the cumulative damage model, failure is immi-
nent when D reaches unity.

In performing the integration, a Monte Carlo analysis is
used, with statistical variation of the inputs to the damage
equation (2), as shown in the equations below:

E®) =E@® +s5d; 3

T(0) = T(D) +s7(Dd» @
®

oo(t) = T0(0) + 5oy 3

B(r) = B(1) + sgda (6)

where d; are the random deviates and s is the standard
deviation.
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To perform the numerical integration, the load history is
first established. For example, this may be a time-
temperature history. Generally, this will be expressed as a
step function with vertical transitions, as shown in exem-
plary form in FIG. 4(a). However, especially in the case of
thermally induced stress load, where load change is not
instantaneous, a trapezoidal step function, as shown in FIG.
4(b), may be used.

Relaxation modulus is calculated for each interval in the
step function, thereby creating a modulus history. Equation
(1) is then used to create a stress history. The stress history
is then inserted into equation (2) to create a damage history.

The numerical integration will generally be performed in
conjunction with a Monte Carlo simulation. In performing
the Monte Carlo simulation, the values of the parameters
used in equations (1) and (2) may be randomly selected to
represent the normal statistical variability of the parameters.
Examples of these parameters include the modulus E,
temperature, T, stress to cause failure in unit time, o, and
the exponent, B, as shown in equations (3) to (6). To
determine the normal distribution, generally, mean values
and standard deviations are used, and the values of these
may be obtained from a variety of sources.

For example, the temperature used in one Monte Carlo
iteration load history interval is calculated from the mean
temperature and the standard deviation associated with that
interval. For example, this may represent variation in tem-
perature around the mean temperature at a storage facility.
This may be experimentally determined or estimated. The
standard deviation used in the separate intervals will prob-
ably be different.

Likewise, the Monte Carlo value for the time-dependent
modulus, E(t), is determined from a mean value, E(t), and a
standard deviation, where S is determined from the experi-
mentally determined variability of mechanical properties.

The stress to cause failure in unit time, o,, is likewise
varied in each iteration. The mean value, 00(t), is the value
of this property as a function of age. The standard deviation
is derived from a regression fit of the aging function. This is
generally based on experimental mechanical property data.
B(t) is likewise determined from mechanical property data.
As an alternative to the use of a normal distribution in the
Monte Carlo simulation, a truncated normal distribution
may be used to accommodate the situation where the actual
value of a parameter cannot be less than or greater than a
certain value.

In the Monte Carlo method, the calculation of D for a load
history is repeated for a number of iterations, and the value
of D>1 is taken as failure of the structure of interest. The
estimated probability of failure is the ratio of the number of
iterations in which failure occurs to the total number of
iterations.

The following Examples are illustrative of the use of the
method of the present invention, but the present invention is
not limited to these Examples.

EXAMPLE 1

A computer program named AGEMOD.C has been writ-
ten to perform the above statistical cumulative damage
model method. The computer code is included in the Appen-
dix. The program computes the damage function as a
function of time using the most likely values of the input
parameters. Asensitivity analysis is then performed by using
a Monte Carlo simulation to vary the computed value of
various input parameters. AGEMOD has been run on a
personal workstation computer.

A sample AGEMOD input file is shown in FIG. 2.
Arranged in input data blocks it contains all of the necessary
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load history, material properties, statistical constants and
base finite element results necessary to perform the analysis.
In this example the model was used to estimate the prob-
ability of solid propellant structural failure in a large popu-
lation of rocket motors. The first block, labeled (a) on FIG.
2(a), consisting of twenty three lines, is the load
environment, in the form of a temperature versus time
history. A linear interpolation is made at the transition from
one temperature to the next, using the interval of time
needed for the motor to reach thermal equilibrium. Using
Eqn. (1), AGEMOD computes the corresponding stress. The
first column is the time, in days, dwelt at its corresponding
temperature, in degrees Celsius, in column two. The third
column is the temperatures standard deviation. The fourth
column is the daily variation of the mean temperature, not
used in this example.

The next data block, (b) in FIG. 2(a), is the variation of
stress free temperature with time. In this case the propellant
is always under some level of load because it is stress free
only slightly above the elevated temperature used to cure it
during manufacture. Therefore there are no times when the
advance of permanent set stops and the continuous function
provided can be used. In general the rate of permanent set
accumulation is a function of the specific storage tempera-
tures but for simplicity this has been ignored. The set rate
used corresponds to ambient temperature only, which domi-
nates in terms of total dwell time, in the input history.

In general, polymeric materials are classified as being
visco-elastic. Their Young’s modulus is therefore a function
of loading time and temperature. The latter dependence is
quantified in the next two blocks (¢) and (d) of FIG. 2(a), of
input, the respective logarithm (base 10) of the temperature
shift factors (a,), versus temperature (first column), for the
bulk and interface propellant. The two blocks following
these (e) of FIG. 2(a) and (f) of FIG. 2(b) are the corre-
sponding logarithm (base 10) of the relaxation modulus
(second column) versus logarithm (base 10) of reduced time.
These are the respective modulus E; and E, in Eqn. 1.
Reduced time is the ratio of loading time to temperature shift
factor (t/a,). AGEMOD uses it to determine values of E; and
E, for each step in (a) of FIG. 2(a).

The next block, (g), is a modeling parameter, K, (the
second column of data). In this example the interface region
is a relatively compact zone, about 0.1 inch thick. This is
also about the smallest practical size of a tensile test coupon
and as such test data of this interface zone actually represent
a gradient average. The propellant finite element model is
broken into ten 0.01-inch thick elements in this region, each
having a different relaxation modulus representing the actual
gradient. Since the first 0.01-inch thick propellant element is
where structural failure starts it is the modeling region of
interest. The parameter k, is the ratio between the maximum
corrected stress expected in the first element and the mean
value measured directly from the laboratory tensile coupon.
It is found by performing a curve fitting operation involving
bulk and interface mean relaxation modulus, interface mean
strength and elongation, and fine scale penetrometer profile
data. It is used to adjust the laboratory measured values of
0o and oo to their corresponding values at d=0.005 inch
(the mid point of the first finite element). Since it is possible
that k, might change as the propellant ages, the propellant
age at each determination is included (the first column of
entries in (g) of FIG. 2(b)). AGEMOD performs a linear
regression fit and adjusts k, accordingly when performing an
analysis. The program forces it to assume a constant value
once the oldest sample determination is reached. In this case
that appeared to be a more realistic approach than continuing
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to extrapolate the regression line beyond the data. The last
column is a list of weighting factors. Each k, entry is an
averaged value computed from data representing a large
number of tensile coupons taken from a single propellant
sample. The weighting factor can be used to favor determi-
nations based on a larger number of test coupons (in practice
it is simply equal to the number of coupons that were tested).
Clearly, k, is very specific to this example but its discussion
serves to illustrate the methodology that can be used to
analyze anisotropic materials.

The next block, (h), is the finite element reference set.
These are used by AGEMOD to perform a regression
analysis to determine that a;. The first column is the interface
relaxation modulus, E,, the second column the bulk relax-
ation modulus, E,, and the final column the stress computed
from the finite element model. In this instance it was found
that the E, measured directly from the laboratory coupons
was sufficient to derive a satisfactory correlation, i.e. it was
not necessary to estimate the modulus in the first propellant
finite element.

The next block, (i) is the logarithm (base 10) of interface
modulus (second column) versus propellant age data that
AGEMOD uses to compute E,,, as a function of time. A
linear regression is used to estimate the relationship. A
number of statistical parameters, physical properties and
constants are provided in (j). The first line contains the ratio,
0.98, of the population mean Young’s modulus, of bulk
propellant, to that used in the base model input set. This is
a conversion made to shift the problem to one of a generic
analysis of the entire population. The adjacent value, 0.130,
is the population (lot to lot) standard deviation. Bulk pro-
pellant Young’s modulus is treated this way (rather than
including the individual values) because its data base is large
and couldn’t be explicitly included in the AGEMOD input
file in a convenient way. If the analysis were being per-
formed for a specific production lot, the ratio reflecting its
Young’s modulus would be used and the standard deviation
would be set to zero since there would be, by definition, no
lot-to-lot variability to contend with.

The next line is the maximum expected value of E, ;. The
adjacent entry is the time needed to approach half of this
value. This parameter appeared to follow an asymptotic
curve and this is what AGEMOD uses to fit the parameter
with. The next line contains the corresponding within lot
standard deviation values of the logarithm (base 10) of the
bulk and interface temperature shift factor. The line after that
contains the logarithm (base 10) of the respective values of
bulk and interface relaxation modulus within lot standard
deviations. The next lines contain the input values of K, oo,
and t, (here expressed as one minute in units of days since
the t/a, data were expressed in minutes). It should be noted
that the aging function models governing bulk and interface
propellant are not the same. They were selected to provide
the optimum fit of the raw data sets and illustrate the
flexibility available within AGEMOD.

The next block of data (k) are the values of the logarithm
(base 10) of o, (second column) versus propellant age.
AGEMOD accounts for changes in this parameter by per-
forming a linear regression analysis of these data. There is
also a weighting factor because each o, is computed from a
number of test samples. The final data block (1) contains the
values of the exponent B (second column) versus propellant
age. These data are treated in the same was as is 0, except
that the standard deviation can be specified.

The final line of input contains the number of statistical,
or Monte Carlo, iterations AGEMOD is to perform. In a
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given iteration AGEMOD perturbs the mean value of each
parameter in Eqn. (2) by a randomly determined deviate
combined with the parameters standard deviation (either
directly input or computed internally). A different deviate is
used for each temperature in the sequence (a). Variables that
are physically coupled are perturbed by a common deviate,
e.g. E, and o, were linked to avoid the unrealistic combi-
nation of a high modulus and a low stress or vice versa.

The resulting total cumulative damage from each iteration
is tabulated. At each step in the input load history AGEMOD
computes a structure reliability defined as the number of
iterations where the total damage, to that point, is less than
unity divided by the total number of iterations made. The
initial integer seed provides a reference point from which the
stream of random deviates starts, i.e. using the same seed for
successive analysis results in the same set of random devi-
ates being used for each. This may be useful when making
comparative runs in which some of the input variables are
being changed.

We have found that when a large number of iterations are
specified a more precise reliability estimate is obtained. This
is, of course, at the expense of a longer run time. In general
a system with a fairly high reliability will require more
iterations to estimate reliability than a less reliable structure
will, e.g. if 1,000 iterations are run and the estimated
reliability is 1.0 (no instances of D>1 are encountered) little
has been revealed about the true failure rate. A run consisting
of 10,000 iterations on a thirty step load history can be run
in less than twenty minutes on a conventional work station.
The key is that Eqn. 1 is used to estimate the stresses rather
than using a more time-consuming finite element model.

EXAMPLE 2

Example 2 illustrates the use of the method of the present
invention to model failure of the an exemplary solid pro-
pellant rocket motor 100, shown in cross-section in FIG. 3.
Solid propellant 110 may be constructed with a highly filled
polymer bonded to the steel case 120 of the motor. A thin
layer of rubber is bonded to all internal surfaces. The peak
stress area occurs in the bulk tip 130 of the propellant.

Bulk propellant properties were determined by laboratory
testing of specimens taken from the solid propellant 110.
These included stress-free temperature shift. The mechani-
cal properties of interface propellant were determined using
2.5-mm thick mini-dogbone samples, taken from the internal
surface that contains the bulk tip 130. Chemical interaction
of the propellant with a rubber liner (not shown) creates a
non-homogeneity in the propellant there.

The Monte Carlo simulation was performed by varying
each of the parameters in equations (1) and (2) within the
respective estimated normal distribution, as shown in equa-
tions (3) to (6). This is repeated a number of times for the
given load sequence, and the fraction of times in which
failure is calculated to occur, that is, in which D>1.0, is
determined, thereby giving the predicted probability of
failure. The Monte Carlo simulation in this case was per-
formed using the computer program AGEMOD, discussed
in Example 1.

A simulation was performed of a nineteen-day thermal
cycling (five days at each of 130° F. and —20° F. followed by
three cycles of thirty-six dwells at each of 130° F. and -20°
F.) for newly manufactured motors. Each motor’s known
bulk grain Young’s modulus was used in the model.

In a lot of 50 motors with Young’s moduli ranging from
764 psi to 1433 psi, one failure was observed. This observed
failure rate of 0.02 can be used to estimate a 90% confidence
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interval of failure rate of approximately 0.01 to 0.08. By
comparison, failure rates for the motors estimated using the
AGEMOD program as described above were dependent on
the Young’s modulus, and varied from about 0.03 for

propellant with a Young’s modulus of 764 psi to a rate of 5

approximately 0.11 for propellant with a Young’s modulus
of 1433 psi. Thus, the estimated failure rate of this lot of
motors is consistent with the experimentally observed rate.

The method of the present invention can be seen in the

Examples to provide an easily obtained and rapid estimate of 10

the cumulative thermal damage to a filled polymeric pro-
pellant of a solid rocket motor, allowing estimation of the
time to failure. It must be emphasized that thermal contrac-
tion is not the only loading mechanism to which the present

invention may be applied. For example, if the mode of 15

loading where the simple extension of a structural member,

12

a length ratio, analogous to the temperature ratio, could be
used in equation (1). The same procedure for finding the
values of a, would be employed, the only difference being
that they would be computed at a reference length instead of
a reference temperature. For example, equation (1) could be
expressed in terms of strain.

Likewise, the Examples have illustrated the method of the
present invention applied to solid propellant rocket motors.
However, the present invention is in principle applicable to
many different filled polymeric systems.

The present invention has been described in an illustrative
manner, and many modifications and variations are possible
in light of the above teachings. It is therefore to be under-
stood that, within the scope of the appended claims, the
invention may be practiced other than as specifically
described.
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AGEMOD.C

/* w/
/* STATISTICAL CUMULATIVE DAMAGE MODEL FOR STRUCTURAL ANALYSIS OF FILLED
POLYMERTIC MATERTALS VERSION 1.0 */

/" v/
/* Jochn Jay Nestor III +/
/¥ - 2 */
/* Started: 03/27/86 Ended: X%X/Xx/9€ v/
7 - */
/* This program computes the damage function as a */

/* function of time using the most likely values of the input parameters.*/
/* A sensitivity analysis is then performed by using a Monte Carlo */
/* simnlation te vary the computed value of various input parameters, */
/* The damage function integratien is perforzmed «/
/* using the Runge-Kutta method with adaptive step size control */
/* See Numerical Recipes in C, Press, Flannery, +/
/* Teukolsky and Vetterling, P. 582-588, ) -/
/* */
/* */
/* Remember to include the proper ANSI-standard C function libraries. */
/i */

#include <ptdlib.h>
®include <stdioc.h>
#include <ctype.h>
#include <math.h>

*nr.h"
"nrutil.h"

s/
define macros for cde integrator parameters . */
TWOPI : twice the mathematical constant pi */
EPSLON: relative error tolerance for ode integrator */
EPSBRT: absolute error tolerance for root finder */
TINY : small positive constant */
CONFID: confidence level for upper failure probability */
WLECL : irnitial value for Cl constant in WLF equation >/
WLFCZ : initial value for C2 constant in WLF equation */
NVAR : nunber of dependent variables (i.e. equaticns) in system +/
NWLF : number of undetermined coefficients in WLF equatien =/
NLINR : number of undetermined coefficients in linear polynomial */
NOUAD : number of undetermined coefficients in quadratic polynomial ¥/
NCUBE : number of undetermined coefficients in cubic polynomial */
SOR(a): sgquare of the argument a */

>/

#define TWOPI 6,28318530717859
#define EPSLON 1.0e-06
#define EPSBRT 1l.0e-06
#define TINY 1.0e-06
f#idefine CONFID 0.585
#define WLFCl -9.0
#define WLFC2 100.0
#define NVAR 1
{fidefine NWLF 3

fidefine NLINR 2
#define NQUAD 3

Page 26
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$§define NCUBE 4

static float sqrarg;
#define SOQR{a) (aqrarg=(al,sgrarg*sqrarg)

I* ; v/
/+ Declare global variable keybuffer = this is now going to be the key- */
/+* board buffer for sscanf, since I don't like the way acanf will enly */
/* buffer on a carriage xeturn : */
/* ‘ _——

char keybuffer([78];

7+ - ' */

/* Declare all glebal variables found in this program * )
/* - */
/" - i/
/* idum : integer seed for random deviate generation +/
/* iterno: current iteration number */
Kad : Y

nt idum,iterno;

+ */

+ pimitl: initial time for damage computaticn +/

+ tfipal: termination time for damage computaion */

- t/
loat tinitl,tfinal;

*/

numpro: number of points in temperature vs time profile 7/

timpro: array of times at which temperature profile is input */

tmppro: array of temperatures at corresponding values in array timpzro */

tmpsig: array of standarzd deviation of temperatures at corresponding */

values in array timpro */

tmpran: gaussian random deviate for temperature at corresponding */

values in array. timpro */

tmpamp: amplitude of temperature veriation */

tmpfrq: frequency of temperature variation >/

rixtim: relaxation peried between time steps . =/

. .

fleat *timpro,*tmppro,*tmpsig,*tmpran, *tmpamp, tmpfrg, rlxtim;
int numpro; .

/* “/
/* Temperature shift factor modeling coefficients */
/* numatb: number of points in loglO(at(bulk)) vs temp profile ~/
/* atbtmp: array of temps at which loglO(at(bulk]) profile is given */
/* logatbs array of loglo(at(bulk)) pazametex values at corxr. temp >/
/* pumati: number of points in loglO(at{intf)} vs temp profile */
/* atitmp: array of temps at which logl0{at(intf)) profile is given */
/* logati: array of loglO(at(intf)) parameter values at coxrr. temp */
/* trefbk: initial reference temperature fox at (bulk) */
/* trefin: initial refersnce temperature for at(intf) */

Page 27
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/* atbsig: value of standard deviation of logld(at(bulk)) */
/* atisig: value of standard deviation of loglO(at(intif)) v/
/% atbran: current log normal randem deviate for at(bulk) ) */
/* atiran: current leg normal random deviate for at(intf) ’ *f
/* atbulk: current value of 1logl0(at [bulk)) -/
/* atintf: curremnt value of loglO{at{intf)) *f
/* */

float *atbtmp,*logatb,*atitmp,*logati;

int nwmatb,numati;

float trefbk,trefin; X
float atbsig,atisig,atbran,atixan,atbulk,atintf;

/* */
/* Stress free temperature parameters v/
/* numtsf: nunber of points in stress free temperature vs time profile */
/+ timtsf: arzey of times at which stress free temperatuze is input =/
/* tsfpro: array of stress free temperatures at correspending values in */
/* timtsf */
/* tefint: initial stress free temperature +/
/% tsfamb: ambient shifted stress frees temperature */
/% sfrsig: stan8lard deviation of set fraction */
/% sfrran: current nermal random deviate for set fraction */

tempfe: temperaturxe of finite element analysis set */

*/
Float tsfint,tsfamb,sfrsig,sfrran,tempfe;
float *timtsf,*tsfpro;
iRt numtsf;
*/
7% Relaxation modulus parameters ' */
%* numebk: number of points in logl0 e(bulk} vs loglO(time/at} profile ¥/
¥ ebktat: array of loglO(time/at) values in logl0 e(bulk) profile */
logebk: array of logl0 e(bulk) modulus values in profile */
numein: number of peints in logl0 e(intf) vs logl0(time/at) profile */
eintat: array of loglO{time/at) values in logl0 e(intf) profile */
logein: array of logl0 e{intf) modulus values in profile */
timint: eurreat value ef relaxation modulus time interval */
ebulk : surrent value of bulk relaxaticn.modulus +/
ebrati: current value of ratio between bulk relazation modulus */
and Class B relaxation modulus «/
ebrtmu: mean value of ebrati */
cbrtsg: standard deviation of ebrati (normal distribution) . T4
eintf :; current value of interface relaxation modulus */
ebksig: standard deviation of loglQ (ebulk) */
einsig: standard deviation of legl0 (eintZ) +/
ebkran: current log normal random deviate for ebulk =/
einran: current leg normal random deviate for eintf */
*/
float ¥ebktat,*logebk, *eintat,*logein;
int numebk,numein;
float timint,ebulk,ebrati,ebrtmu,ebrtsg:
float eintf,ebksig,einsig,ebkran,einran;
/s i/
- - - @ esawme - “« L - e - oo me 28N PR, B L ot



/i

Va4
/*
/-k
/&
VA
/*
VAl
/*
/i
/-)r
/*
/*
/t
/-}
/*

/*
/*
/i
/i

o 4 F % o & F F B ¥

US 6,301,970 B1

21 22

Stress model parameters

numkt : number of peints in kt vs age profile

ktage : array of ages at which kt parameter data is input

ktpre ¢ array of kt parameter values at corresponding ages in ktage

ktwgt : array of statistical weights to apply to kt parameter data

ktsig ! standard deviation of log (base 10} of kt

Xtran : current random deviate for kt parameter

enmax ¢ maximum ratio between aged and unaged bulk meodulus

enlmb : mean time for aged bulk modulus to increase 508 of the
difference between current ebulk and enmax

numem : number of points in em profile

emage : array of ages at which interface modulus is input for aging
trend

empro : array of log (kase 10) aof interface modulus at corresponding
ages in emage .

Aumstr: number of peints in stress regression analysis profile

ebspro: array of bulk medulus values for stzess regression analysis

eispro: array of interface modulus values for stress regression

sigpro: array of corrected stress values at corresponding values
of bulk and interface modulus values

k3d : three dimensional concentration factor

t numkt,numen, numstr;

loat *ktage, *ktpro,*ktwgt, ktsig, ktran;
loat enmax,enlmb,*emage, *empro;
loat *ebspro,*eisp:o,*sigpzo{RBd;

Damage function parameters

strthr:
taud
numsg0:
sglage:
sglproe:

sgOwgt:
numstb;
stbage:
stbpro:

stbwgt:
stbsig:
stbran:

meap minimum thresheld corrected stress for damage occurrence
time scale unit for time to fallure curves

aumber of points in logl0(sigmaO) vs age profile

array of ages at which loglO(sigmaQ) is input

array of loglO(stress) requized to produce failure in time
taud at corresponding ages in profile

array of statistical weights to apply teo sigma0 data
nunber of points in &tb vs age profile

array of ages at which stb parameter is input

array of negative reciprocals of slope of leg corrected
stress vs log (base 10) reduced time to failure curve
array of statistical weights to apply to std data

standard deviation of stb parameter

stb parameter random deviate

int numsg0,numstb;
float st:thr,tauO,*ngage,*ngpro,*sgougt,*stbage,*stbpro,*stbugt;

float stbsig,stbran:

/i
/%
/*
/*
/*
/-A-
/i

Statistical cutput parameters

numitr:
strpre:

tsftmp:

numper of Monte Carlo iteratioms

array of most likely stress values computed at array of times
input as part of temperature profile

array of most likely stress free temperatures computed at .
times input as part of temperature profile
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array of most likely bulk modulus values computed

times input as part of temperature profile

array of most likely interface modulus values computed at
times input as part of temperature profile

24

/* dampro: array of most likely loglO(damage fractions) accumulated

/* at array of times input as part of temperature profile

J* lefpro: array of factozs which when multiplied by computed stress

/* _wvalues at all times produces a damage facter of 1.0

/* at input temperature profile times

/* rellim: array.of one-sided lower confidence limit reliability

/* probab;lltles of damags NOT exceeding 1.0

/* nfail : array of number of Monte Carlo iterations in which

/* accumulated damage fractions exceed 1.0 at specified

/* temperature profile times

/* corran: correlated random deviate draw

/* betap : current value of beta density p parameter (num failures + 1)

/* betag : current value of beta density g parameter (num successes + 1)
/* damsim: array of common logarithm of accumulated damage fractions at
/* temperature profile times

/*

int numitr;
£loat *strpro,*tsftmp,*ebkpro,*einpro, *dampro, *lsfpro,*rellim;
oat corran,betap,betaq;

t *nfail;

oat **damsim;

intile:
outfil:
simouts

I/0 files

array containing input filename
arzay containing output filename
arrzay containing simulation output filename

ary infile[B80),outfil{80],simout(€0];

-
Prototyp
+

¢ all functions found in this program

Define function fpolyn

/* Use: define a set of basis functions for a polynomial fit '
/* Bre: the function is passed the independent variable X and the order
/* cf the fit polynomial

/* Act: the

function ceomputes the value of the polynomial basis

/* functions at x
/* Pst: the function returns the value of the basis functions evaluated
/* at x .

veid fpolyn

(x, afunc, mma)

fleoat x,*afunc;

int zuma;
{
int i:

afunc{l] = 1.0e0;
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for (i=2;i<=mma;i++) afunc[i] = x*afunc{i-1];
}

/* */
/* Define function temper */
/% Use: the function computes the temperature at the given time */
/* Pre: the functiom is passed the value of the time parameter */
/* Aect: the function uses the temperature at the nearest previous +/
/* time step unless the time is within rlxtim of the next time step -/
/* in which case it uses a linearly interpolated value */f
/+* Pst: the function returns the interpelated value at the requested time*/
/* - - */
float temper (ttime)

float ttime; .

{

static int j=0;
int i;
float *xa,*ya,y,dy;

hunt ({(timpre,numpro,ttime,&l);

(if (§ <= 0)
{
retuzrn (tmpran[l] +
tmpamp[1] *cos ( (double) (TWOFI*tmpfrg*ttime)));
}
i1f (3 >= numpro)
{

return (tmpran[numpre)] +
tmpamp [numpro] *cos { (double) (TWOPI*tmpfrq*ttime) IBE
} . .

if ((timpro(j+1l] - rixtim) > ttime)
{

y = tmpran{j];

xa = vector(l,2};
ya = vector(l,2);

if ((timpro[§+1] - rlxztim) > timpro[jl)
xa(l] = timpre([j+1l] - rlxtim;
else )
xa[l] = timpre({jl:
yal[l) = tmpran[3jl;
xa[2] = timpro[j+l):
ya{2] = tmpran{j+l];

polint (xa, ya,NLINR, ttime, &y, &dy) ;
£ree_vecter (xa,l1,2):
free_vector (ya,1,2);

}

return (y + tmpamp[jl*cos((deuble) (TWORI*tmpfrg*ttime}));

.- - -cerr = - ren - - -

" Page3l
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Define function wlfeqn

Use: the function computes the loglO(at) and its derivatives
according to the WLF-formula

Pre: the function is passed the temperature and fitting parameters

Act: the function computes the loglO(at) and its derivatives with
respect to the fitting parameters

Pst: the function returns the values of the loglO(at) and its
derivatlives at the prescribed temperature in the appropriate
arrays .

*/
v/
*/
*/
*/
*/
*/
*/
*/
*/

void wlfeqn (ttemp,param,y,dy,nparam)
float ttemp,param(],*y.dyl(]s

int pparam:

{

(20 B I BN A

fleat denom,templ,densg;

templ = ttemp - param[3];-
denom = parawm([2] + templ;
densg = SQR(denom) ;

*y = param[l)*templ/dencm;
dy[l] = templ/denom;

dyl2) = -{*y)/denom;
"dy{3) = -param{l]*param{2]/densg;

*/

Define function atbleg
Use: the functien computes the temperature shift facter, legl0({atb)
Pre: the function is passed the value of the temperature .
Act: the functien computes the temperature shift factor for the
bulk modulus by fitting a wlf model to the input data
and then applying the model for the input temperature
Pst: the function returns the log(base 10) of the temperature shift
facter

float atblog (ttemp)
£flcat ttemp;

{

static int iff=Q;

static float *sig,*atbcof,**covar,**alpha,
alamda, chisq,echisgq; )

float *init;

float value, *dydt;

int i,itst,mfic,*lista;

if ({iff == 0)

{
iff = 1;
lista = ivector(l,NWLF);
sig = vector(l,numatb);
init = vector(l,NWLF);
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atbecof = vecter(l,NWLE):
covar = matrix (1,HWLF,1{NWLF);
alpha = matrix (1,NWLF,1,NWLF);

init{l) = WLFCl:
inilt[2] = WLFCZ2;
init[3] = trefbk;

for {i=1;i<=numatb;i++)

sigli] = 1.0e0;
}

mfit = NWLF: .

for (i=l;i<=NWLF;i++)

{
listali] =
atbecofli] = init(i];

alamda = ~1;

m:qmin(atbtnp,logatb,Sig,numath,atbcof,NWLF,lista,mfit,cévar,
alpha, échisg,wlfegn, £alamda);

itst = 0;

while (itst < 2)
{
ochisq = chisq;
mrqmin (atbtmp, legath, sig, numatb, atbeof, NWLF,lista,mfit,
covar,alpha, échisqg,wifeqn, éalamda);
if {chdisg > ochisq)
itst = 0;
else if [fabs (ochisg-chisq) < 0.1}
itst++;
}

alamda=0,0e0;
mzqmin(atbtmp,logatb,sig,numatb,atbcof,NWLF,lista,mfit,cova:,
alpha, échisq,wifeqn, talamda) ;

free_matriz(alpha, 1,NWLF, 1, NWLF);
free matrlx(covaz,l NWLF,1,NWLF);
f:eg_vector(s;g,l numatb) ;
free_ivector(lista,1,NWLF);

dydt = vector{l,NWLF);
wlfeqn {ttemp, atbcof, Evalue,dydt, NWLE} ;
free_vector(dydt,1,NWLE);

return {value + atbran};

}
7+ i */

/% Define function atilog v/
/* Use: the function computes the temperature shift factor, leglO(ati) */
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/* Pre: the functien is passed the value of the temperature . */
/* Act: the function computes the temperature shift factor for the +/
' bulk modulus by fitting a wlf model to the input data */
/* and then applying the model for the input temperature */
/* Pst: the function returns the log(base 10} of the temperature shift */
IAd factor */
TAd - */

float atiiog (ttemp)
float ttamp;
{

static int iff=0;

static float *sig,v¥aticef,**covar,**elpha,
alamda, chisq,ochisqg;

float *init;

float value, *dydt;

int i,4itst,mfit, t1lista;

if (iff == 0)
{
1ff = 1;
lista = ivectoz{1,NWLF);
sig = vector({l,numati);
init = vector(l,NWLF};
aticof = vector(l,NWLF):
covar = matrix (1,NWLF,1,NWLF);
alpha = matrix (1,NWLF,1,NWLF);

init[1l] = WLFC1;
init[2] = WLFC2;
init[3) = trefin;

for (i=l;i<=numati;i++)
{

sig(i) = 1.0e0;
]

mEit = NWLF:
for (i=1;i<=NWLF;i++)

lista(i) = i;
aticoffi]l = init[il;

)
alamde = -1;

mrqmin(atitmp,lcgati,sig,numati,aticof,NWLF,lista,mfit,cova:,
alpha, &¢hisq,wlfeqgn, Ealamda);

itst = 0;

while (itst < 2)
{
ochisq = chisq;
mzqmin(atitmp.logati,sig,numati,aticof,NWLr,lista,mfit,
covar,alpha, §chisq,wlfeqn, kalamda);-
if {chisg > ochisq)
" igst = 0;
else if {fabs{ochisg-chisqg) < 0.1)
Citstdd;
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}

alamda=0,0e0;
mzqmin(atitmp,1ogati,sig,numatb,aticof,NWLF,lista,mfit,covar,
alpha, échisq,wlfeqn, salamda};

free_matrix(alpha,l,NWLF,1,NWLF);
free_matr.ix (covar,l,NWLF, 1,NWLF) ;
f:ee_vecto.:(sig, 1,numati);
free_ivectox{lista, 1,NWLE);

}

dydt = vectozr(l,NWLE}; '
wlfeqn (ttemp,aticof,évalue,dydt, NWLF);
free_vector(dydt,l,ml‘) ;

return (value + atiran);

*/

Define function ebklog */
Use: the function computes the bulk relaxation meodulus, logl0 (ebk) */
Pre: the function is passed the value of the loglO(time/at) */
Act: the function computes the log base 10 of the */
bulk modulus by fitting a cubic model to the input data +/

and then applying-the model for the input value of leglO(time/at)*/

Pst: the functien returns the log{base 10) of the bulk relaxzation */
modulus */

-— i/

loat ebkleg (logtat)
loat leogtat;

static int iff=0;

statie float *sig,*ebkcof,**u,**v,¥w,**cvm, chisg;
float value,*afunc;

int 1;

if (iff == 0)
(

iff = 1;

sig = vector{l,numebk)};
ebkcof = vector(1,NCUBE);

u = matrix(l,numebk,l,NCUBE];
v = matrix(1l,NCUBE,1,NCUBE);
w = vector(l,NCUBE):

evm = matrix(1l,NCUBE,1,NCUBE);

for (i=1;i<=numebk;i++) sigli) = 1.0e0:

svdfit (ebktat,logebk, sig, numebk, ebkcof ,NCUBE, u, v, w, échisq, fpolyn)
svdvar (v, NCUBE,w,cvm} ;

free_matrix(u,l, numebk, 1,NCUBE) ;
free matrix({v,1,NCUBE,1, NCUBE) ;
free vector(w,1,NCUBE);

free matrix {cvm, 1, NCUBE, 1,NCUBE} ;
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free_vector(sig, 1, numebk) ;
}
afunc = vector{1,NCUBE);
fpelyn (leogtat,afunc,NCUBE);
value = 0.0e0;
for (i=1;1<=NCUBE;i++) value += ebkcof(i]*afunc[i];
free_vector(afung, 1,NCUBE) ;
return (value + ebkran + logten{ebrati));
*/

Define function einlog *f

Use: the function computes the interface relaxation modulus, loglO{ein)*/

Pre: the function is passed the value of the loglO(time/at) */

Act: the function computes the log base 10 of the interface v/
modulus by fitting a cubic model to the input data and then */
applying the model for the input value of loglO{time/at) */

Pst: the function retuzns the log(base 10) of the interface relaxation*/
modulus */

*/

éoat einlog {(logtat) .

€locat logtat;

static int ifg=0;

static float ¥sig,*eincof, **u,¥*v,*w,**cvm, chisq:;
float value,*afunc;

int i;

if {ifg == 0)

{
ifq = 1;
8ig = vectox(l,numein):
eincof = vector(1,NCUBE);
u = matrix(1l,numein, 1, NCUBE);
v = matrix(1,NCUBE,1,NCUBE):
w = vector(1l,NCUBE);
cvm = matzix(1,NCUBE,1,NCUBE) :

for (i=l;i<=numein;i++) sig(i] = 1.0e0;

avdfit{eintat,logein, sig, numein,eincof,NCUBE,u, v, W, &chisg, fpolyn) )
svdvaz (v, NCUBE,w, cvm) ; '

free_matrixi(u,1, numein, l,NCUBE) ;
free_matrix(v,1,NCUBE, 1,NCUBE) ;
free_vector {w,1,NCUBE) ;
free_matrix(evm,1,NCUBE, 1,NCUBE) ;
free_vector(sig, 1, numein) ;

)

afune = vector(l,NCUBE):
fpolyn (logtat,afunc,NCUBE);

.- - ————-
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value = 0.0e0; .
for (4=1;i<e=NCUBE;i++) value += eineofli]*afuncliil):

f:ee_vector(afunc,l,NCUBEi;

return (value + einran);

Define function blkage
Use: the funection computes the ratio of aged/unaged bulk modulus
. values ’ .

Pre: the functiocn is passed the current age, maximum ratic and mean
time for modulus to increase 50% of the difference between its
current and maximum value

Act: the function computes the current ratic using an exponential
decay model '

Pst: the function returns the current value of the ratie

float blkage (tage, maxrat, lambda)
float tage,maxrat,lambda;
{

float decay;

decay = exptwo (-tage/lambda);
return (maxrat - decay* (maxrat - 1.0e0));

Define function intage

the function computes the ratic of aged/unaged bulk modulus
values

the function is passed the current age

on the first call, the function computes the lineaxr regression
coefficient of log (base 10) of interface modulus versus age;
on all subsequent calls, the function uses the computed
regressicn coefficient to calculate the desired ratio

: the function returns the ecurrent value of the ratio

float intage (tage)
float tage;

{

static int 1£d=0y . :

static float *sig,*intcof,**u,**v,*w,'*cvm,chisq;
float time,value,*afunc;

int i;

if (ifd = D)
{
ifd = 1: .
sig = vector(l,numem) :
intcof = vectoer{1l,NLINR);
u = matrix(l,numem,l,NLINR);
v matrix (1,NLINR,1,NLINR);
w vectox (1,NLINR);
cvm = matrix(1,NLINR,1,NLINR);

[

Pages7.
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for (i=1;i<=pumem;i++) sig[i] = 1.0e0;

svdfit (emage, enmpro, sig, humen, intcof,NLINR,u,v,w, &chisq, fpolyn) i
svdvar (v, NLINR, w, cvm) ;

f:ee_patzix(u,1,numam,1,NLINR);
free_matrix(v,1, NLINR,1,NLINR);
free_ vector {w,1,NLINR);
free_matrix(cvm,l,NLINR,l,NLINR);
tree_vectar(sig,l;numem):

]

if (tage <= emage [numem])

{
}

else

time = tage;

~ time = emage [numem] ;

}

afunc = vector{l,NLINR):
fpelyn (time,afunc,NLINR};

wvalue = 0,0e0;
for [i=2;i<=NLINR;i++) value += intcof{i]l *afunc[i]:

free_yectc:(afunc,l,NLINﬁ):

return (expten(vélue));

*

+ /
+ Define function tempsf =/
Use: the function computes the shifted stress free temperature */
Pre: the function is passed the time since manufacture ¥/
% aAct: the function computes the current stress free temperature by */
using linear interpolation of the inmput table and adding */
the randem component due to variation in the set fractien - */
Pst: the function returns the current value of the stress free */
TAd temperature */
% . : Y

float tempsf (tage)
float tage;
{

static int k=0;

int i

float *xa,*ya,y.,dy;

hunt (timtsf, numtsf, tage, &k);
if (k <= 0)
{
return (tsfproll] + (tsfamb - tsfint)*sfrran);

if (k->= numtsf)
{
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return (tsfpro{numtsf] + (tsfamb - tafint)*sfxran};
)

xa = vector(l,2);
ya = vector(l,2);

xa[l] timtst[k];
yalll tsfprolk);
xa{2] = timtsf(k+l];
ya[2)] = tsfpro[k+l}:

i

polint (xa, ya,NLINR,tage, &Y, &4y) ;

free_vector (xa,1,2);
free_vector (ya,1,2);

return (y + (tsfamb - tsfint)*sfrran};

}
’” - A

/* Define function ktfunc /
/* Use: the function computes the value of the kt parameter f

Pre: the function is passed the current age */
Act: the function computes the value of the kt parameter as a functien*/

of age by fitting a partial limear regression to the input data +/
Pst: thée function returns the computed value of kt +/
*/

#3cat ktfunc (tage)

#loat tage;

static int ife=0;

static float *sig,*kteof,**u,**v, *w,**cvm, chisq;
float time,value,¥afunc;

int i;

if (ife == 0)

ife =.1;

sig = vector (1, numkt) ;

ktcof = vector(1,NLINR);

u = matrix(l,numkt,1,NLINR):

v = matrix(1,NLINR,1,NLINR};

w = vector(1,NLINR];

evm = matrix(1,NLINR,1,NLINR)

for (i=l;i<=pumkt;i++) sigl[i) = 1.0/sqroat (ktwgt{il):

svdfit (ktage, ktpro, sig, numkt, ktcof, NLINR,u, v, W, &chisqg, fpolyn)
avdvar (v, NLINR,w, cvm) ;'

free_matrix(u,1,nuwnkt,l,NLINR);
free_matrix(v, 1,NLINR, 1,NLINR);
free_vector {w,1,NLINR) }
free_matrix(cvm,1,NLINR,1,NLINR);
free_vector (=ig, 2, numkt);
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if (tage <= ktage[numkt]}
{

]

else

{
}

time = tage;

time = ktgge [numkt] s
afunc = vector(1,NLINR);
fpolyn (time, afune, NLINR) ;

value = 0,0e0; .
for (i=1;i<=NLINR;i++) value += kteof[i)*afunc{i]:

free_ytctoz(afunc,l,NLINR);

return (expten{logten(value) + ktran));

44
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Define function sigmai

Use: the function computes the minimum corrected
stress necessary te cause fallure

Pre: the function is passed the current age

Act: the function computes the mesn of the minimum
corrected stress necessary to cause failure

the functien returns the computed value of sigmai

*/

o/

return (ktfﬁnc(tage)'st:th:);

Define function sigmal
Use: the function tomputes the corrected

stress necessary to cause failure in time tau0
Pre: the function is passed the current age

Act: the function computes the mean of the log (base 10} of the

corrected stress necessary to cause failure in time tauld

‘using a linear regression analysis fit

Pst: the function returns the computed value of sigmal

float sigmal (tage)
float tage;

{

static int ifa=0;

static fleat ¥sig,*sglcof, ¥*u,**v, *w, ++cvm, chisq;
float value, time, *afunc;

int i:

i1f (ifa == 0)

{
ifa = 1;
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sig = vector(l,numsgo0);
. sglcof = vector(l,NLINR);

u = matrix{l,numsg0,1,NLINR);
v = matrix{l,NLINR,1,RLINR};
w = vector{l,NLINR)/

cvm = matrix{1l,NLINR,1,NLINR);

for (i=1l;i<=numseg0;i++) sig[il = 1.0/sqroot (sglwgt[il);

PATENT
NAVY CASE No. 78,988

svdfit(sgﬂage,sgopzo,sié,numsgo,ngcof,NLINR,u,V,u,ichisq,fpclyn);

svdvar (v, NLINR, W, cvm) 5

free_mat:ix(u,l,numng,l,NLINR);
fzee_matzix(v,l,NLINR,1,NLINR);
free_vector (w,1,NLINR) ;
free_matrix(c?m,l,NLINR,1,NLINR);
free_vectcr(sig,l,numng);

}

if (tage <= ngage[numngl)

time tage;

(34
28
=]
[
It

sglage [numsg0] ;
afunc = vector(1,NLINR]:
fpolyn (time,afunc,NLINR);

value = 0.0e0;
for (i=1;i<=NLINR;i++) value += sgOcof(i}*afunc[il’

free_vecto:(afunc,l,NLINR);

return (ktfunc{tage)}*expten(value)};

=.~7-,*

/* Define functioa stbfcn

/* Use: the function computes the value of the stb parameter

/* Pre: the function is passed the current age

/* Act: the function computes the value of the negative reciprocal eof

/* the slope of log corrected stress vs reduced time to failure

/* curve by fitting a linear regzession £it to the observed data:
/* on the first call the function computes the regression

/* coefficients and on subsequent calls estimates the value of sthb
A using the computed coefficients

/% Pst: the function returns the computed value of stb

/6
float stbfen (tage)
float tage;

{

static int ifb=0;

static float *sig,*stbcof,**u,*‘v,*w,**cvm,chisq:
float time,value,*afunc;
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int i

if (ifb == 0)

{
ifb = 1;
sig = vector(l,numstb);
stbeof = vector(l,NLINR);
u = matrix(l,numstb,l,NLINR};
v = matzix(l,NLINR,],,NLINR) ;
w = vector (1,NLINR);
evm = matzix(l,NLINR,1,NLINR);

for {i=1;i<enumstb:i++) sig(i] = 1.0e0/sgroot (stbwgt(il);

svdfit(stbage,stbpro,sig,numstb,stbcof,NLINR,u,v,w,&chisq,fpelyn);
svdvar (v, NLINR,W,cvm) ; .

free_matrix (d,1,nmumsth,1,NLINR) ;
free_patrix(v,l,NLINR,l,NLINR);
fzee_yectcz(w,l,NLINR);
free_patzix(=Vm,1,NLINR,1,NLINR);_
fzee~vectcz(:ig,l,numstb);

}

if (tage <= stbage[numstb])
{ .
}

else

{
}

time = tage;

time = stbage[numstb];

afunc = vector(l,NLINR);
fpolyn (time,afunc,NLINR);

value = 0,0e0; ' .
for (i=1;3i<=NLINR;i++) value += stbeof[i]*afunc([i]’

free_vecto:(afunc,l,NLINR);

return (value + stbran);

} :
/* - ———rf
/* Define function stress >/
/* Use: the function ccmputes the corrected stress used by the damage */
/* model * . */
/* Pre: the function is passed the current time : */
/% Act; the function computes the current temperature using the input */
/* . temperature profile, the shifted stress free temperature, the */
/* relaxation moduld and then applies the regression fit parameters */
/* to compute the corrected stress : */
/* Pst: the function returns the value of the corrected stress */
/* - */
float stress (tage) .
fleat tage;

.m - mmmes -y son - 1. nn
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float ttemp,ttsf,tfactr,tbulk,tintf,ei,eb,en,em,s‘tr,ta‘-\;bulkcf.inthﬁ

static int ife=0;

static float *smdcof,*xa,*ya,*sig,**u, wyy, kv F¥eym, chisqg;
float *afunc;

int i;

if (ifc == 0}
{

ifec = 1;

sig = vectoz(l, numstr) ;

xa = vecter(l,numstz);

ya = vector(l,numstx);

smdcof = vector(l,NLINR);

u = matrix(l,numstr,l,NLINR};

v = matriz(1,NLINR,1,NLINR);

w = vector(1l,NLINR);

cvm = matrix(l,NLINR,1,NLINR); ' -

for (i=1;i<=numstr;i++)

{
xa{l] = ebsprolil/eispro[i];
yal[il = sigpro(i)/eispro[i];
sigfli) = 1. 0/eisprelil;

}

svdfit(xa,ya, siq, numsir, sndcof,NLINﬁ, u,v,w, tchisq, fpolyni;
svdvar (v, NLINR,w, cvm) }

free_matrix{u,l,numstr, 1,NLINR};
free |  matrix(v,1,NLINR,1,NLINR);
free_ “vector (w,1,NLINR) ;

free matrix(cvm, 1, NLINR,1, NLINR),
free_: vector (Xa, l,num.str);

free vnctar(ya 1,numstr};
free_vector(sig,1,numstr);

ttemp = temper (tage);

ttsf = tempsf (tage);s

rfactr = (ttsf - ttemp)/(tsfint - tempfe);
atbulk = atbleg (ttemp}:

atintf = atilog (ttemp);

tau = timint/tauld;

bulkcf = smdcof[2];

intfecf = smdcof[l]:;

if (tau > TINY}

tbulk = (fleat)} logten{tau) - atbulk;
tintf = (float) logten(tau} - atintf;

else
tbulk = (float) logten(TINY) - atbulk;
tintf = (flocat) logten(TINY} ~ atintf;

. ~-~ maaaa - . PR TR - con - A mam
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)

ebulk
eintf

ebklog (tbulk):;
einleqg {tintf);

en = blkage (tage, enmax, enlmb);
em = intage (tage);
eb = expten(ebulk):
" el = expten{eintf); .
str = k3d* (bulkcf*en*eb + intfcf*em*ei) *tfactr;

return {str):

1

/* - . */
/* Define function failpr . . */
/* Use; the function computes the distribution function for the failure */
/* prebability based on the simulation results so that the upper *]
/* confidence limit can be computed by the root finder v/
/* Pre: the function is passed the failure probabllity v/
/* Act: the function cemputes the confidence level that the true */

failure probability is less than the prescribed value assuming */
2 beta density and subtracte the desired confidence level for /

the root finder - */
the- function returns the computed confidence level minus the */
the desired confidence level v/

»/

return (betai (betap,betaq,x) - CONFID);.
* */
+ Define function derivs : */

Use: the function computes the time-derivative of the damage.function‘/
Pre: the function is passed the time and pelnters to the independent */

: variable and'derivative arrays */
* Act: the function calls the stress function to compute corrected */
/* stress at the prescribed time and then computes the damage >/
VA function time derivative */
/* Pst: the function returns a pointer to the damage function derivative*/
/* to the ode integrator */
/* */

veid derivs (t, y, dydt)
float t,y[],dydt[]);
{ .
fleat sigma, sig0,sigi, strmod, stb, temp;

sigd = sigmaO(t);

sigl = sigmal(t);

sigma = gtress(t);

stb = stbfcn(t);

if ((sigma - sigi) > TINY*(sigQ =- sigi))

P .
strmed = (sigma = sigi)/{sig0 - sigi):

— o - “n A
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temp = stb*logten(stImod) ~ atintf;
dydt[l] = expten(temp)/tau0l;

else
dydt[1] = 0.0e0;

/% +f
/* pefine function input 7
/* Usa: the function cpens and reads the given input filename for the */
/* necessary input parameters */
/* Pre: the function is passed the name of the input filename */
/* Act: the function opens the named file and reads the input values; */
/* the function also alleocates the necessary storage for the */
/™ input and output arrays *f
/* Pst: the function returns no value v/
/* - . */

void input {filename)
chaxr filename(80];

{
- int i,nwn;

float intrvl,begage;
FILE *fpi;

fpi = fopen{filename,"z");

fscanf(fpi,"%d $£f &f RfY, &num, tbegage, éxlxtin, ctmpfrq) ;
numpro = num + 1;

timpro = vector(i,numpre);
tmppro = vector'(l,numpra))
tmpsig = vector (1, numpro) ;-
tmpran = vector (1,nwnpro);
twpamp = vector (l,numpro);
tsftmp = vector (1, numpro);
strpro = vector(l,numprol;
ebkpro = vector(l,numproj;
einpre = vector(l,numpro);
dampro = vector(l,numpro);
lsfpre = vector(l,numpzo);
rellim = vector (l,numpro);
nfail = ivector{l,numpzo);

timpro(l] = begage;
for (i=1l;i<=num;i++)
{
fscanf (fpi, "¢ Bf VL 3L",
gintrvl, étmppro{il], stmpsigli), étmpampli]) ;
timpre[i+l) = timpro[i] + intrvl:
tmpran(i) = tmpprolil:
)

tmppro[numpre] = tmppro[num];
tmpsig{numpre] = tmpsig(num] ;
twpamp (pumpro]l = twmpamp [num];
tmpran[numpreo] =

tmppro [numpre] ;
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tinitl = timpro(l];
tfinal = timprolnumprel:;

fscanf (fpi,"&d", snumtsf)

rimtsf = vector(l,numtsf);
tsfpro vgc,tor(]_.,numtsf);

for (i=1;i<=numtsf;i+¥)

. fscanf (£pi, "8 %f", stimtsf(i], &tsfpro(di]};
}

fscanf (fpl,"%f 3% !uf",&tsf.int,&tsfamb,&sfzsig),-

sfrran = 0.,0e0;

fscanf (fpi, "3d", &numatb);

L]

atbtmp vector{l,numatb);
logath = veetor (1, numatb};
atbran = 0.0e0;

for (i=1;i<-—:nm'natb;i++)
{ . :

fescanf (fpi, "% #L", gatbtmp[i), &logatb{il);
}

fscanf (£pi, "9d", &numati);

atitmp = vector (l,numati);
logati = vactor {l,numati);
atiran = 0.0e0;

tor (i=1;j'.<ﬂ\mati; i+

fscanf (fpi, "$E *£7, gatitmp[i}, &logati(i] Y3
) .

fscanf (fpi,"9d", énumebk) ;

ebktat = vector(l,numebk];
logebk = vector(l,numebk);
ebkran = 0.0e0;

for (i=1;i<=numebk;i++}
{

fscanf (fpl," 8¢ %£", &ebktat[il],&logebk[i] e
)

fscanf (fpi,"%d", gnumein) ;

eintat = vector (1,numein) ?
logein = vector (1,numein}:
einran = 0.0e0;

for {i=1;i<=numein;i++)
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{
}

fscanf (fpi,"3f S£", geintat[i],slogein(i));

fscanf (£pi, "3d", &numktl;
ktage = vector({l,numkt);
ktpro = vector {1, numkt) ;
Xtwgt = vector(l,numkt);
ktran = 0.0e0;

for (im1;i<=numki;itt)

£scanf(fpi, "sEf 8L s£", Ektage[i],lktp:o[i],&ktwgt[i]);
}

£scang (£pi, ", &ktsig);
fscant (fpi,"td", snumstr);
. sigpre = vector (1,numstr) ;
ebspro = vector(l,numstr);
eispro = vectoz ({1,numstr);
for (i=1;i<=numstr;i++)

£scan£(fpi,"%f 3£ 8", &eispro[i],&ehsp:o[i],nsigpro[i]);
) .

fscanf (fpi, "4 3£ %f“,itempfe,&trefbk,&trefin);

fscang (fpi,"$d™, shumen) ;

emage = vector (1,numem) ;
empre = vector (1,numem) }

for (i=1;i<=numem;i++)

{

fscanf (fpi, 8L 8£", gemage(i], &empxof[il);
}

fscanf (fpi, "sf Rf", eebrtmu, éebrtsg) ;
fscanf (fpi, "%L %£v, senmax, senlmb) ;

ebrati = ebrtmu;

fscanf (fpi, "%f $f", satbsig, datisig):
fscanf{fpi, "%£L $f", sebksig, &einsig);
fscanf {fpi, "BEf",&k3d);

focanf (£pi, "ef", éstrthr);
fecanf (fpi, "$£", &tauld);

f£scanf (£pi, "%d”, &numng);-

sglage = vector (1,numsg0)} ;
sglpro = vector(l,numsg0);
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eglwgt = vector{l,numsg0)
for (i=1;i<=numsg0;i++)

fscanf (fpl,"%f $f &L", &ngage[i],&ngpro[i],&sgowgt[i]);
] .

fscanf (fpi, "%d", &numstb);
stbage = vecter(l,numstb);
sthpro = vector(1l,numstb);
stbwgt = vector(l,numstb)}
stbran = 0.0e0; ’
for (i=1;i<=numstb;i++)

fscanf (fpi, "ef £ 3", &stbagé[i],astbp:o[i],&sébugt[i]);
] .

fscanf (fpi, "%f", &atbsig)?

fscanf (fpi, "&d 2d", gnumitr, &idun) ;
if (pumitr > 0)

'( damsim = matriz(l,numitzs,l,numpro);

)

close (fpi};

return;
- - -L-/
Define function damage */
Use: the function computes the accuwnulated damage from tinitl to */
tfinal >/
Pre: the function is passed the curreat iteration number */
Act: the function integrates the damage function from tinitl to A
tfinal to compute the accumulated damage at each temperature */
profile point and stores the data in the appropriate glcbal */
arrays i . */
Pst: the function returns no value . */
= w

void damage (lter)

int iter;

{
float *ystart,hl,hmin,ti,tf,logtat;
int i,nok,nbad;

iterno = 4ter;l
cimint = timprel[2] - timpro[l);

1f (iter == 0)

[
tsftmp(l] = tempsf(timpra[l]):
strprofl) = stress(timpro([l1]);
ebkpro[numpro] = 0.0;

- ror - e oam
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einprolnumpxe] = 0.07
dampro(l) = logten(TINY);
1sfpro(l] = axpten(-dampxo[1]/stbfcn(timpro[1])):
nfailil]l = 0;
cozran = 0.0;
}

ystart = vector(l,NVAR];
for (i=1;i<=NVAR;i+t) ystartil] = 1.0e0;

for (1=1;i < numpro;it+)
{
ti = timprolil);
¢f = timpro[i+l]):
timint = tf - ti;

hl = t£ - ti;
hmin = 0.0e0; R

PATENT
NAVY CASE No. 78,088

odeint (ystart,NVhR,ti,tf,EPSLON,hl,hmin,&nnk,&nbad,de:iv:,xch);

if (iter == 0)
{
tsftup (1+1) = tempsf(tf];
strpro(i+l] = stress(tf);
logtat = logten(timint/taud) - atblog {tmpranlil);
ebkproli] = blkage(tf,enmax,enlmb)*expten(ebklog(logtat));
logtat = logten(timint/taul) - atilog(tmpran(i]);
einpro[i] = intage (tf)*expten(einlog (logtat)):
if (ystart{1l] > (1.0eQ + TINY))
dampro [i+1l] =, logten(ystazt(l] - 1.0e0);
else
dampro[i+l] = logten {TINY);
lefpro{i+l] = axpten(—dampzo[i+1]/stbrcn(tf)):
nfail (i+1)] = 0;
1
else
( .
1f (i == 1) damsim[iter][i] = logten (TINY);
.1f (ystart(l] >= 2.0e0) nfail [i+1]++;
if (ystart[l] > (1.0e0 + TINY})
damsim[iter] [i+1] = logten(ystart{1l] - 1.0e0);
else
damsim[iter) (i+1] = logten({TINY);

free_yecte:(ystart,1,NVAR);

Define function simult

Use: this function performs the Monte~Carlo simulation locp fer the
damage analysis

Pre: the function is passed the number of iterations to perform

Act: the functien computes the accumulated damage using the game
values of the input parameters but varying the parameter
values used in the computation for each iteratioen
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/* the input temperature-time profile is varied with a distinct */
/* random deviate used at each time step */
/* Pst: the function returns no value *f
/" -— */
vold simult ({iterat)-
int iterat;
{
int 1,3:
for (i=l;i<=iterat;i++)
{
corran = gasdev{&idum);
for (j=1;3<=numpreo;j++)
{
tmpran{y] = tmppro[j] + gasdev{&idum) *trpsig (i)’
}
atbran = gasdev{&idum)*atbsig;
atiran = gasdev(iidum)*atisig;
sfrran = gasdev(&idum)*sfrsig;
ebkran = gasdev(&idum)*ebksig;
ebrati = ebrtmu 4 gasdev(&idum)*ebrtsg;
einran = corran*einsig;
ktran = corran*ktsig;
stbran = gasdev({sidum)*stbsig;
damage {i);
1
for (i=1;i<=numpro;i++)
{
betap = nfail([i] + 1.0;
betaq = numitr - nfail(i] + 1.0;
rellim(i] = 1.0 =~ zbrent (failpz;0.0,1.0,EPSBRT);
)
o ot */
+ Define function output : */
/* Use: this function prints the output to a file of the most likely */
/* parameter values and the Monte Carle simulation damage ’ */
/* computation */
/* Pre: the function is passed the name of the output file and the */
/* number of Monte Carlo simulation iterations */
/% Act: the function cpens the cutput file, then writes the output data */
Ad te the file and then closes the file */
/* Pst: the function returns no value */
/* */

void output (filout, £ilsim, iter)
char filout[80],filsim[80];
int iter;
{
int i,3:
float mulogd,varlgd,prfall;
FILE *fpo,*{ps; :
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fpo = fopen {filout,"w");
fps = fopen (£ilsim,"w"};

fprintf (fpo, “%s $e &s Bz %3 %s &s $s\n"," Time"," Temp",
"Bulk Medul”,"Int. Modul"®, ™ Tst"," Stress ","log(Dam)”,
" OLFOS"):

for (i=1;i<=numproii++)

{ . .
fprintf (fpo,"$9.2f 86.1f $10.3e $10.3e 86.2f %10.3e $8.4f %6.41\n",
timpro[i],;mppro[i],ebkp:o[i],einp:c[i],tsftmp[i];atzpzo[i),
damproii) ,lsfprolil}; .

}

clecse (fpo);

if (iter > 0)
{
fprintf (fps,“%s $6d \n", "Nuxber of iteratiens = ",iter};
fprintf (fps,"%s %s %5 %s &s\n"," Time ", " Mean log(dam)",
* var. log{dam)"," Prfail "," Rel. Limit"):

for (jel;j<=numpro;j++)
{ .

mulegd = 0.0e0:;
varlgd = 0.0e0;
prfail = (£loat) (nfail[5§]) /numitz;

for (i=l;i<=iter;it++)
{

mulogd += damsim[i][j]/numitr;

for (i=1;i<e=iter;it++)
{

1

fprintf (fps,"$8.2f $14.4f $14.4F $10.6f %10.6f\n",
timp:o[j],mulcgd,vazlgd,prfail,rellim[j]];

varlgd += SQR( (damsim[i][]j] =~ mulogd)) /numitr;

}

close (fpa}:
}

1 . .
I+ *f
/* Define function main */
/* - - */
main ()

{
printf ("Name of input file: >"):
sscanf (gets (keybuffer), "is", infile);
printf ("Name of regular output £lle: >");
sscanf (gets (keybuffer), "%s", outfil);
printf ("Name of simulation output file: >"):
sscanf (gets (keybuffer), "¥s", simout);

input {infile);
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damage (0);

if {(numitr > 6) simult (pumitcl;

output (outfil,simout,numitz)’

printf ("\nFrogram terminating normally.\n");

pzintf ("\n -*—%[ End of run }*-*-

68
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\n");

exit(0);

1 .
/* w/
/* End of file */
/= */

- —n sam
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What is claimed is:
1. A method for estimating damage to a filled polymeric
material, comprising the steps of:

building a finite element model of the polymeric material
structure;

identifying a high stress area of the polymeric material
structure;

determining an expected range of a relaxation modulus of
the polymeric material expected for a load history for
the structure;

exercising the finite element model over discrete intervals
for the expected relaxation modulus range;

determining regression coefficients for a fit of stress
versus relaxation modulus for the high stress area;

determining the relaxation modulus history from the load
history;

determining a stress history from the load history using
the determined regression coefficients and the relax-
ation modulus history; and

numerically integrating a damage function using the
determined stress history.

2. The method of claim 1, said step of determining a stress

history further comprising:
determining stress using the equation:

N
T =KY | (@GEGE)Tse = T)/(Tsro — To)
i=1

where E, are the relaxation moduli of regions comprising the
structure; E,; are aging functions for determining the effect
of aging of a material on the relaxation moduli; a, are the
determined regression coefficients; K is a proportionality
constant for adjusting for a modeling approximation; T is
the stress-free temperature of the polymeric material; T, is
the common stress-free temperature for which the a, were
determined; T, is the common environmental temperature
for which the a, were determined; and T is the temperature
at which the stress o is being estimated.
3. The method of claim 1, said step of numerically
integrating the damage function further comprising:
varying the value of a parameter used in evaluating the
damage function according to a statistical distribution
of the parameter; and
repeating a number of iterations of the numerical
integration, for performing a Monte Carlo simulation.
4. The method of claim 2, said step of numerically
integrating the damage function further comprising:
varying the value of a parameter used in evaluating the
damage function according to a statistical distribution
of the parameter; and
repeating a number of iterations of the numerical
integration, for performing a Monte Carlo simulation.
5. The method of claim 3, said step of varying the value
of a parameter comprising varying a load parameter.
6. The method of claim 3, said step of varying the value
of a parameter comprising varying a material mechanical
parameter.
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7. The method of claim 5, said step of varying the value
of a parameter comprising varying the value of the tempera-
ture.

8. The method of claim 6, said step of varying the value
of a parameter comprising varying the value of the relax-
ation modulus.

9. The method of claim 6, said step of varying the value
of a parameter comprising varying the value of the stress
which will cause failure in a given time.

10. The method of claim 6, said step of varying the value
of a parameter comprising varying the value of the damage
function exponent.

11. The method of claim 3, said step of varying the value
of a parameter further comprising:

using mean and standard deviation values of the param-
eter derived from lot acceptance data.

12. The method of claim 3, said step of varying the value

of a parameter further comprising:

using mean and standard deviation values of the param-
eter derived from an experimentally determined aging
curve for the parameter.

13. The method of claim 3, said step of varying the value
of a parameter comprising use of a truncated normal distri-
bution curve for the parameter.

14. The method of claim 1, said step of determining the
relaxation modulus history further comprising:

modeling the relaxation modulus history as a step func-
tion.

15. The method of claim 1, said step of determining the

relaxation modulus history further comprising:

modeling the relaxation modulus history as a trapezoidal
step function.

16. The method of claim 3, further comprising the step of:

estimating the probability of failure as the ratio of the
number of iterations in which the damage function is
greater than unity to the total number of iterations.

17. The method of claim 1, said step of determining the
stress history further comprising determining the stress
history using an aging function for a material property.

18. The method of claim 17, further comprising the step
of:

approximating the aging function from experimentally
measured aging data assuming a constant value for ages
older than the last measured datum.

19. The method of claim 1, said finite element model

being a plane strain finite element model.

20. The method of claim 2, further comprising:

K being a stress-concentration factor for adjusting for the
three-dimensional nature of the structure when a two-
dimensional finite element model is used to determine
the regression coefficients.

21. The method of claim 1, further comprising the step of:

performing the numerical integration on a personal work-
station.



